Anomaly Detection for Temporal Data using Long Short-Term Memory (LSTM)
نویسندگان
چکیده
We explore the use of Long short-term memory (LSTM) for anomaly detection in temporal data. Due to the challenges in obtaining labeled anomaly datasets, an unsupervised approach is employed. We train recurrent neural networks (RNNs) with LSTM units to learn the normal time series patterns and predict future values. The resulting prediction errors are modeled to give anomaly scores. We investigate different ways of maintaining LSTM state, and the effect of using a fixed number of time steps on LSTM prediction and detection performance. LSTMs are also compared to feed-forward neural networks with fixed size time windows over inputs. Our experiments, with three real-world datasets, show that while LSTM RNNs are suitable for general purpose time series modeling and anomaly detection, maintaining LSTM state is crucial for getting desired results. Moreover, LSTMs may not be required at all for simple time series.
منابع مشابه
Long Short Term Memory Networks for Anomaly Detection in Time Series
Long Short Term Memory (LSTM) networks have been demonstrated to be particularly useful for learning sequences containing longer term patterns of unknown length, due to their ability to maintain long term memory. Stacking recurrent hidden layers in such networks also enables the learning of higher level temporal features, for faster learning with sparser representations. In this paper, we use s...
متن کاملPrediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network
Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...
متن کاملPrediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network
Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbrea...
متن کاملAnomaly Detection in Video Using Predictive Convolutional Long Short-Term Memory Networks
Automating the detection of anomalous events within long video sequences is challenging due to the ambiguity of how such events are defined. We approach the problem by learning generative models that can identify anomalies in videos using limited supervision. We propose end-to-end trainable composite Convolutional Long Short-Term Memory (Conv-LSTM) networks that are able to predict the evolutio...
متن کاملUnsupervised and Semi-supervised Anomaly Detection with LSTM Neural Networks
We investigate anomaly detection in an unsupervised framework and introduce Long Short Term Memory (LSTM) neural network based algorithms. In particular, given variable length data sequences, we first pass these sequences through our LSTM based structure and obtain fixed length sequences. We then find a decision function for our anomaly detectors based on the One Class Support Vector Machines (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017